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ABSTRACT Evolutionary analyses of viral sequences can provide insights into trans-
mission dynamics, which in turn can optimize prevention interventions. Here, we
characterized the dynamics of HIV transmission within the Mexico City metropolitan
area. HIV pol sequences from persons recently diagnosed at the largest HIV clinic in
Mexico City (between 2016 and 2021) were annotated with demographic/geographic
metadata. A multistep phylogenetic approach was applied to identify putative trans-
mission clades. A data set of publicly available sequences was used to assess interna-
tional introductions. Clades were analyzed with a discrete phylogeographic model to
evaluate the timing and intensity of HIV introductions and transmission dynamics
among municipalities in the region. A total of 6,802 sequences across 96 municipalities
(5,192 from Mexico City and 1,610 from the neighboring State of Mexico) were included
(93.6% cisgender men, 5.0% cisgender women, and 1.3% transgender women); 3,971 of
these sequences formed 1,206 clusters, involving 78 municipalities, including 89 clusters
of $10 sequences. Discrete phylogeographic analysis revealed (i) 1,032 viral introductions
into the region, over one-half of which were from the United States, and (ii) 354 migration
events between municipalities with high support (adjusted Bayes factor of $3). The most
frequent viral migrations occurred between northern municipalities within Mexico City, i.e.,
Cuauhtémoc to Iztapalapa (5.2% of events), Iztapalapa to Gustavo A. Madero (5.4%), and
Gustavo A. Madero to Cuauhtémoc (6.5%). Our analysis illustrates the complexity of HIV
transmission within the Mexico City metropolitan area but also identifies a spatially active
transmission area involving a few municipalities in the north of the city, where targeted
interventions could have a more pronounced effect on the entire regional epidemic.

IMPORTANCE Phylogeographic investigation of the Mexico City HIV epidemic illustrates
the complexity of HIV transmission in the region. An active transmission area involving a
few municipalities in the north of the city, with transmission links throughout the region,
is identified and could be a location where targeted interventions could have a more
pronounced effect on the entire regional epidemic, compared with those dispersed in
other manners.
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HIV remains an important transmissible disease worldwide, contributing to signifi-
cant morbidity and deaths each year (1). HIV sequences collected for drug resist-

ance testing as part of routine care for persons with HIV (PWH) can be used to infer the
dynamics of transmission using phylogenetic approaches. If geospatial and temporal
data associated with each sequence are incorporated into these analyses, then the spa-
tiotemporal spread of HIV in a region can be deduced. Further linking of clinical and
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demographic data can provide a detailed understanding of the spread of the virus
across a region and provide insights into the factors that may be driving or impacting
viral transmission.

Phylodynamic and phylogeographic analyses can be used not only to describe epi-
demiology but also to guide the choice and implementation of interventions designed
to prevent further HIV transmission, by highlighting key high-risk populations and
regions where limited prevention efforts may have an impact that significantly extends
to the entire region (2–7). A detailed understanding of the underlying transmission dy-
namics in a region could also provide the ability to monitor an epidemic for sudden
changes, evaluate the impact of public health interventions, or modify public policy.
However, as for all molecular epidemiologic studies, these inferences and conclusions
are impacted by the sampling depth (i.e., ratio of the number of samples to the num-
ber of PWH in a geospatial unit) and representativity (i.e., sampling by demographic
factors) of the sampled population.

Mexico has had a progressive approach to the HIV epidemic since its early stages
(8) and has provided free antiretroviral therapy (ART) to all PWH since 2003 through
the Centros Ambulatorios para la Prevención y Atención de VIH/SIDA e Infections de
Transmisión Sexual (CAPASITS), the Servicios de Atención Integral (SAIH) network of
clinics for uninsured persons, and social security clinics. The Condesa Clinic in Mexico
City is one of the largest HIV care providers in Mexico. It offers a comprehensive suite
of services, including testing and counseling for HIV and other sexually transmitted
infections (STIs) and mental health, HIV, and transgender care, with laboratory testing
and retention services. In addition to caring for over 19,000 PWH, the clinic has an
active screening and prevention program, with over 25,000 persons tested for HIV and
3,500 to 4,000 new HIV infections diagnosed annually (9). Centralization of nearly 70% of
the local new diagnoses in the Condesa clinic represents a unique opportunity to perform
molecular surveillance and phylogeographic analyses. Since 2016, the Center for Research
in Infectious Diseases of the National Institute of Respiratory Diseases (CIENI/INER), a refer-
ence laboratory for HIV sequencing, has established a close collaboration with the Condesa
clinic to perform baseline HIV genotyping for all recently diagnosed persons and persons
returning to care at Condesa for HIV drug resistance, as well as molecular surveillance in
the Mexico City metropolitan zone (including Mexico City and neighboring municipalities
of the State of Mexico). Notably, Mexico City is also one the most populated metropolitan
areas in the world, with close links to the United States, as well as many countries in
Central and South America and Europe. Here, we use the data from this impressive pro-
gram, with centralized screening and treatment, to describe in detail the phylodynamics of
HIV in the Mexico City metropolitan zone, focusing on how the region is impacted by the
larger national and worldwide epidemics and how the movement of virus within the
region impacts the local epidemiology.

RESULTS
Overview of data. A total of 6,802 sequences (5,192 sequences from Mexico City and

1,610 from the neighboring State of Mexico, with 98.6% being HIV-1 subtype B) were
included in the study (Fig. 1); 93.6% belonged to cisgender men, 5.0% to cisgender women,
and 1.3% to transgender women. Sequences were obtained from all 16 boroughs in Mexico
City and 73 (60.3%) of the 121 municipalities in the State of Mexico (Fig. 1). Numbers of new
sequences varied with time, and included periods in late 2018, early 2019, and early 2020
when markedly fewer sequences were collected (see Fig. S1 in the supplemental material).
See Table 1 for a more complete description of these sequence data.

Clade identification. After implementation of the method published by Cuypers
et al. (10), 3,971 of the 6,802 sequences formed a total of 1,206 clades or geneti-
cally related clades of sequences. These clades involved 78 boroughs in Mexico
City and municipalities in the State of Mexico. The number of clades observed per
municipality correlated with the number of sequences per population in that
municipality (R = 0.61, P , 0.0001), and clade size correlated with the number of
geospatial units included in the clade, both in 100% male clades and in mixed-
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gender clades (R = 0.92 and R = 0.93, respectively, P , 0.0001) (see Fig. S2). The
majority of the clades identified were limited in size (mean size, 4 sequences [95%
confidence interval [CI]), 2 to 5 sequences] (see Fig. S3).

Viral introductions into Mexico City and the State of Mexico. Next, we used dis-
crete phylogeographic analysis to first estimate the number of viral introductions into the
Mexico City metropolitan region. Of the 1,032 introductions inferred, 394 were from other
Mexican states (Fig. 2A), the majority of which were from Quintana Roo (n = 163). Of the
638 viral introductions from international locations, 568 were from the United States, and
75% of those were from California (Fig. 2B). We next estimated the timing of viral introduc-
tions into the region and found sustained transmissions into the region, with a peak of viral
introductions into the region occurring in 2016 (Fig. 2C).

Viral migration within Mexico City and the State of Mexico. As noted in Materials
and Methods, to analyze viral migration in the study region we limited our analysis to only
clades of$10 sequences, to allow for computational feasibility. Among all clades, 89 clades of
$10 sequences (total of 1,364 sequences, all being HIV-1 subtype B), were identified and ana-
lyzed to elucidate transmission dynamics within the Mexico City metropolitan region. To allow
simultaneous viewing of sampling date and geographic information, data were uploaded to
the MicroReact platform (11) (https://microreact.org/project/223ln8u9trx5cqxdaeyfsu) (see Fig.
S4). Discrete Bayesian phylogeographic analysis of these clades revealed 354 transmission
events between municipalities and boroughs in the region, with strong support (adjusted
Bayes factor [BFadj] of$3), and a complex viral migration network within the region, with fre-
quent intermixing between municipalities in Mexico City and the State of Mexico (Fig. 3).

FIG 1 Sampling distribution. The map shows HIV partial pol sequences sampled in the municipalities of Mexico City (green tones) and Mexico State (brown
tones). Only municipalities with $200 sequences are labeled.
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Nevertheless, transitions within Mexico City accounted for the majority of transitions locally,
and this pattern was consistent across time (see Fig. S5).

Next, we temporally reconstructed the direction and intensity of viral flows between
municipalities in the region (Fig. 3B). The most frequent of the inferred viral migrations
occurred between municipalities within Mexico City, i.e., Cuauhtémoc to Iztapalapa (5.2%
of events), Iztapalapa to Gustavo A. Madero (5.4%), and Gustavo A. Madero to Cuauhtémoc
(6.5%). These data are also shown in a Sankey plot, which more clearly demonstrates the
relative contributions of the viral migrations to and from various municipalities (Fig. 4). We
also examined the role of risk and time in relation to these viral migration patterns (see Fig.
S6A). As expected, the vast majority (86.4%) of viral migration events were associated with
transmissions between men who have sex with men (MSM) (see Fig. S6B). Of these events,
68.5% (59.2% of all events) occurred locally between municipalities within Mexico City. Of
note, the majority of transmissions involving only heterosexual persons linked municipal-
ities in Mexico City with those in the State of Mexico (77.6% of the transmission events
between heterosexual persons, which accounted for 9.63% of all inferred events). We also
observed a negative correlation between increasing geospatial distance and the number
of transmission events (R = 20.26, P = 0.0025), with most migration events occurring
between municipalities less than 50 km apart (Fig. 5A). Finally, as expected, we also found
a positive correlation between the population density (individuals per square mile) of the
municipality and the total number of transmission events from/to these locations (R = 0.47,
P , 0.001) (Fig. 5B), with Cuauhtémoc, the most densely populated municipality, being
found to be the main hub of transmission events.

DISCUSSION

This phylogeographic and phylodynamic analysis of the HIV epidemic in the Mexico
City metropolitan area highlights a highly dynamic regional epidemic that also demon-
strates interactions with most of the rest of the states in Mexico and countries in the
Americas, Europe, and Asia. This is expected, given that Mexico City is one of the larg-
est metropolitan areas in the world, central to Mexico, with cultural and commercial
links around the world. Interestingly, we found that the state of Quintana Roo (which
includes popular tourist destinations such as Cancun, Playa del Carmen, and Tulum)
was a major source of viral introductions into the Mexico City epidemic from within

TABLE 1 Cohort description

Parameter

Data for:

P
Mexico City
(n = 5,192)

State of Mexico
(n = 1,610)

Gender (no. [%]) 0.014
Female 269 (5.19) 72 (4.48)
Male 4,830 (93.2) 1,526 (94.9)
Transgender female 78 (1.51) 10 (0.62)
Transgender male 3 (0.06) 0 (0.00)

Age (mean [95% CI]) (yr) 30.0 (25.0–36.0) 27.0 (24.0–33.0) ,0.001

HIV risk (no. [%])
Bisexual 5 (0.10) 0 (0.00)
Heterosexual 431 (8.30) 108 (6.71)
MSM 2,246 (43.3) 755 (46.9)
MSM transgender 77 (1.48) 6 (0.37)
Other 5 (0.10) 0 (0.00)
PWID 1 (0.02) 0 (0.00)
PWID and MSM 3 (0.06) 0 (0.00)
Unknown 2,424 (46.7) 741 (46.0)

Current CD41 cell count (mean [95% CI]) (cells/mL) 213 (105–337) 191 (95.0–309) 0.001
HIV RNA level (mean [95% CI]) (log10 copies/mL) 4.66 (4.08–5.19) 4.64 (4.14–5.14) 0.978
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FIG 2 Viral introductions within the Mexico City metropolitan region. (A and B) Origins of the viral introductions from other
states in Mexico (A) and from other countries (B). States and countries are colored according to the number of introductions

(Continued on next page)
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Mexico. There has been recent worsening of the HIV epidemic in this state (12) and,
because it is a popular vacation destination, visitors from across Mexico and the world
frequent Quintana Roo (located in the Yucatan peninsula). Even more striking was the
number of viral introductions from the U.S. state of California, with over 400 inferred
events. As in other previously published reports (13–19), these results highlight the im-
portance of the U.S. HIV epidemic to the Mexican HIV epidemic, as well as the close
ties of the major metropolitan centers of California to Mexico City and not only to the
border state of Baja California. The inferred transmission links with other countries,
including Canada, Brazil, and Argentina in the Americas, Spain, France, Germany,
Sweden, and the United Kingdom in Europe, and China, Japan, South Korea, and the
Philippines in Asia, are also noteworthy. This reflects the role of Mexico City as a global
business and tourist hub. Indeed, direct flights now exist between Mexico City and key
cities of many of the countries with inferred transmission links (including Los Angeles
and San Francisco in California), facilitating easier and faster connections.

On a regional level, our analysis illustrates the complexity of HIV transmission within the
Mexico City metropolitan area and also identifies an especially active transmission area involv-
ing a few municipalities in the northeast region of the city, i.e., Cuauhtémoc, Iztapalapa, and
Gustavo A. Madero. The epidemic in this region has become more important during the past
decade and may be a target for focused interventions. Transmissions in this area are domi-
nated by MSM and, unsurprisingly, the Cuauhtémoc borough includes some of better-known
gay-friendly neighborhoods in the city. Importantly, Cuauhtémoc and Iztapalapa harbor the
two branches of the Condesa clinic. Additionally, Iztapalapa and Gustavo A. Madero are the
two most highly populated boroughs of the city (20, 21), while Cuauhtémoc (together with
Iztacalco and Benito Juárez) is one of the most densely populated. As shown in our analyses,
population size was correlated strongly with the number of migration events to/from each
municipality. This observation suggests that interventions for early diagnosis and treatment in
these boroughs may have a larger impact on the overall epidemic than interventions ran-
domly dispersed throughout the region. Continued phylodynamic monitoring will allow us to
see whether interventions targeted to these areas have an impact on future transmission
regionally.

Interestingly, viral migration events between heterosexual persons showed a differ-
ent phylodynamic and phylogeographic pattern, in comparison to those between
MSM. The majority of events involving only heterosexual persons linked municipalities
in Mexico City with those in the State of Mexico (77.6% of the interborough transmis-
sion events between heterosexual persons, which accounted for 9.63% of all inferred
events). Our group and others previously described marked differences in the sociode-
mographic profiles of MSM and heterosexual populations involved in the HIV epidemic
in Mexico City, with the latter showing overall lower socioeconomic and educational
status, as well as later presentation to clinical care (22, 23). It is thus not surprising that
the phylodynamics and geographic distribution of the heterosexual epidemic are dif-
ferent from those of MSM and will require different types of interventions, deployed in
different locations, to optimize prevention efforts in this population.

Our study has a number of limitations that are common to many observational studies.
Although completeness of sampling in the metropolitan zone has improved with time
(22), completeness of the local network may still be impacted by missing data from the
early years of the program. Also, important biases may occur, given that the Condesa clin-
ics attract mainly persons without social security, living close to the two clinic branches,
and persons with social security, especially those living in the south of the city, may attend
their corresponding clinics and are missed in the present study. Additionally, hard-to-reach
populations, including sex workers, persons who inject drugs (PWID), migrants, and hetero-

FIG 2 Legend (Continued)

originating from the location. Of note, 75% of all introductions originating from the United States were from California. (C) Timing
of external introductions (gold) together with sequences sampled in the region (gray). See Materials and Methods for details
about Bayesian phylogeographic inferences. The timing of introduction events was inferred from the timing of the most recent
common ancestor (tMRCA) of each identified clade of $2 sequences.
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sexual cisgender men who are partners of cisgender women with diagnosed infection,
who likely do not readily engage in care, may be underrepresented in our study.

While our study illustrates and details the utility of discrete phylogeographic analyses
when applied to a comprehensive data set of viral sequences, such spatial investigations
are possible only when viral sequences (either as part of local cohorts or available in public
databases such as GenBank) are associated with sufficiently precise metadata, particularly
the collection date and the sampling location. The availability of precise collection dates
for isolates obtained over a sufficient time period enables reliable timing of epidemic
events due to the accurate calibration of molecular clock models. Further, phylogeographic
inference is possible only when viral genomes are associated with sampling locations.

FIG 3 Inferred migration events between municipalities in the Mexico City metropolitan region over time. (A) Map of the migration events between
municipalities. The thickness of the arrows reflects the average number of inferred migration events between municipalities. Municipalities are colored
according to the number of sequences in clades (brown tones for Mexico State and green tones for Mexico City). The color of the arrows indicates the
timing of the inferred migration event. (B) Timing of inferred migration events (red) together with sequences sampled in the region (gray). See Materials
and Methods for details about Bayesian phylogeographic inferences.
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Although our data set is a comprehensive collection of HIV genomes from across Mexico, it
is possible that locations remain undersampled. Information on behavioral risk can also be
incomplete or incorrect, particularly because cisgender men who are partners of cisgender
women living with HIV represent a hard-to-reach population.

For optimal analysis, a sample would be deep, with uniform sampling across demographic
and geographic groups. However, sampling in this manner can identify only diagnosed infec-
tions, as the number and proportion of undiagnosed individuals remain unknown in these
geospatial locations and demographic groups. We illustrate the impact of variation in the
numbers of sequences obtained per location in Fig. S2 in the supplemental material, where
we show an association between the number of clades observed per municipality and sam-
pling (number of sequence per population size) (R = 0.61, P , 0.0001). The accuracy and

FIG 4 Proportion of viral migration events from each source location (from) to the recipient location (to). The graph is colored by origin,
with Mexico State municipalities shown in brown tones and Mexico City municipalities in green tones. Only locations that account for $2%
of the events are labeled.
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uniformity of metadata across the sample may also be a limitation, because this could be
affected by regional differences in stigma, leading some populations to be more forthcoming
than others. While the resolution of phylogeographic analyses always depends on the spatial
granularity of available samples, we think that such analyses can still be powerful in elucidat-
ing the dispersal history of sampled lineages and highlight the need to improve testing and
screening. Finally, we also acknowledge that a fully integrated analysis of all clades, including
more than two locations, would be preferable, but the number of sequences available and
the number of different sampling locations to consider in the analysis are computationally
prohibitive and would require weeks of server runtime in a Bayesian phylogenetic software
package such as BEAST.

In conclusion, our study leverages a strong effort to perform HIV molecular surveil-
lance in the Mexico City metropolitan area to infer phylodynamic and phylogeographic
characteristics of the local epidemic. We observed a highly complex local epidemic,
with strong links to other states in Mexico and several countries around the world, con-
sistent with a large commercial and cultural metropolitan zone. However, we observed
a hot spot of HIV transmission, involving three municipalities in the northeast region of
Mexico City, that warrants focused interventions. Additionally, we observed marked
differences in phylogeographic patterns of heterosexual viral migration versus MSM vi-
ral migration, suggesting that the overall epidemic could benefit from interventions
targeting venues and locations frequented by persons coming into the city.

MATERIALS ANDMETHODS
Ethics statement. This study was reviewed and approved by the Ethics Committee and the Ethics in

Research Committee of the INER (project codes E02-17 and E02-20) and was conducted according to the
principles of the Declaration of Helsinki. All participants provided written informed consent to partici-
pate. Additional approval was obtained from the University of California, San Diego, Human Research
Protection Program (protocol number 190121).

Data set. HIV partial pol sequencing was performed for all persons who were recently diagnosed or
returning to care after ART interruption at the largest primary HIV clinic in Mexico City and who voluntar-
ily agreed to participate in the study between 2016 and 2021, as described previously (22). Only one
sequence (the first sampled) per participant was included in the analysis. Sequences were annotated

FIG 5 Association between geospatial distance between municipalities (A) or population density (B) and number of inferred migration events. (A)
Association between the number of inferred migration events from/to each municipality and the geospatial distance between municipalities. (B)
Association between the total number of inferred migration events (from and to) by municipality and the population density. Only municipalities with $10
inferred events are labeled. Population density was defined as the population size estimates by municipality in 2020 obtained from INEGI (53) divided by
the area size in square miles.
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with demographic and geographic metadata obtained from a computer-assisted self-administered ques-
tionnaire completed at enrollment. Participants’ information was kept in a secure server, ensuring confi-
dentiality. Deidentified data sets were used for analysis. The background data set of HIV partial pol
sequences was obtained from the Los Alamos National Laboratory public HIV sequence database (see
below) (24, 25).

Identification of representative phylogenetic clades. After sequence curation, a multistep phyloge-
netic approach was applied to identify putative clades of transmission within the region (across municipal-
ities). We applied the following step-by-step analytical approach. First, transmission clades that best
approximate the epidemic dynamics were identified following the method described by Cuypers et al.
(10). Briefly, Mexico City and Mexico State sequences were complemented with 9,927 HIV pol sequences
sampled in other states in Mexico (26, 27), 7,874 sequences sampled in the neighboring U.S. state of
California, and 158,661 publicly available HIV pol sequences with available location annotation from other
countries (one sequence per individual) obtained from the Los Alamos National Laboratory public HIV
sequence database (24, 25). For the latter and to reduce the data set size while maintaining an appropriate
set of epidemiologically relevant background sequences, we used BLAST (28) to identify the 50 genomes
closest to each of the 6,802 genomic sequences sampled in the Mexico City metropolitan region (2, 29),
leading to a total of 5,594 background sequences from the rest of the world. These sequences were
aligned to the HXB2 pol reference sequence (GenBank accession number K03455) (30). Next, phylogenetic
trees were inferred using FastTree2 (31) with the GTR1C substitution model. From these trees, well-sup-
ported clades (i.e., Shimodaira-Hasegawa [SH] local support of at least 0.9 [32–34]) including only sequen-
ces from Mexico City/State were identified. The purpose of this phylogeographic analysis was to delineate
clades corresponding to distinct events of HIV introduction into the Mexico region; we considered an intro-
duction event to be any branch in the phylogenetic tree where the location assigned to a node was
Mexico City/State and the location assigned to its parent node in the tree was “other location.” Only clades
that captured viral migration into the Mexico City/State region were further analyzed.

Phylogeographic inference. Phylogeographic inference was performed using the asymmetric discrete
phylogeographic model (35, 36) implemented in the BEAST v1.10.5 software package (37). To promote esti-
mation accuracy and precision of the migration rates and the nucleotide substitution rates, the migration
and substitution model (GTR1C) was shared across the clades (3, 38). Estimates of the expected number of
migration events between all pairs of locations (Markov jumps) were computed through stochastic mapping
techniques (39, 40). Specifically, we looked at migration from outside the study region to the study region (vi-
ral introductions) and migration within the region (between municipalities).

Simultaneously with reconstructing the geographic migration history, the spread across risk groups was
estimated while allowing for sampling uncertainty (41). Briefly, missing risk group information was treated as
an ambiguous risk group assignment that could take the value of the other risk groups (that is, the missing
data could take the value of heterosexual, MSM, PWID and MSM, or other risks). The starting state of a change
in location or risk group is referred to as the “from” location or risk group. Similarly, the location or risk group
to which the virus migrated is referred to as the “to” location or risk group.

When sequence data sets lack a clear temporal signal, it is common practice to use independently
derived evolutionary rate estimates to specify a suitable prior expectation for the evolutionary rate parameter
(42, 43). For subtype B (98.6% of our cohort), the evolutionary rate for pol is estimated to be between;0.001
and;0.003 substitutions/site/year (44–46). For this reason, we specified a normal distribution as prior on the
mean clock rate, with a mean of 0.002 substitutions/site/year and a standard deviation such that the 95% CI
ranges from 0.001 to 0.003 substitutions/site/year (44–46). Given that most inferred clades are small and lack
temporal signal, we opted to model the rate of evolutionary change in clades with $10 taxa with a relaxed
clock model (47). To infer the timing of introductions of the smaller clades, the phylogeny was rescaled into
units of time with treedater (48), assuming a strict molecular clock with the rate of HIV genome evolution
drawn from an externally estimated distribution for HIV-1 subtype B with a mean of 0.002 substitutions/site/
year (44–46). To further incorporate uncertainty in the estimated clock rate, molecular clock estimation was
replicated 100 times, and the average timing of introduction was inferred. For the same reason, a constant
size coalescent tree prior was specified for all clades.

Next, we aimed at interrogating HIV dispersal within the region. To analyze data that are amenable
to Bayesian phylogeographic inference, given the statistical uncertainty related to the inference of tree
topologies for small clades, we included only clades of size $10 sequences (n = 89) originating from at
least two distinct municipalities. To identify the subset of migration rates that was most informative to
reconstruct the dispersal history, we used a model averaging procedure (Bayesian stochastic search vari-
able selection [BSSVS]) (35), with which it is conveniently possible to obtain Bayes factor (BF) support for
all possible migration rates in a single analysis (35). To account for the relative abundances of samples
from each location, we measured the BFadj based on a methodology similar to the tipdate randomization
test for temporal signal (49, 50). We consider only links with BFadj support of $3 for the analyses (51).
Markov chain Monte Carlo (MCMC) chains were run long enough to ensure adequate mixing. Maximum
clade credibility (MCC) trees were obtained with TreeAnnotator v1.10 (37), and convergence and mixing
properties were inspected using Tracer v1.7 (52). The temporal and geospatial distribution of these
clades can be visualized in MicroReact (11) (https://microreact.org/project/223ln8u9trx5cqxdaeyfsu) and
in Fig. S4 in the supplemental material.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 2.7 MB.
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